
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268800304

Online Passive Learning of Timed Automata for Cyber-Physical Production

Systems

Conference Paper · July 2014

DOI: 10.1109/INDIN.2014.6945484

CITATIONS

31
READS

403

1 author:

Some of the authors of this publication are also working on these related projects:

Informed Learning - Simulation-based Learning View project

Informed Learning - Hybrid Learning View project

Alexander Maier

Fraunhofer Institute for Optronics, System Technology and Image Exploitation IOSB

34 PUBLICATIONS 293 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alexander Maier on 13 March 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/268800304_Online_Passive_Learning_of_Timed_Automata_for_Cyber-Physical_Production_Systems?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/268800304_Online_Passive_Learning_of_Timed_Automata_for_Cyber-Physical_Production_Systems?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Informed-Learning-Simulation-based-Learning?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Informed-Learning-Hybrid-Learning?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Maier3?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Maier3?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Fraunhofer_Institute_for_Optronics_System_Technology_and_Image_Exploitation_IOSB?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Maier3?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Maier3?enrichId=rgreq-df5c9aa7a441d43e3473723d1e7d5a7e-XXX&enrichSource=Y292ZXJQYWdlOzI2ODgwMDMwNDtBUzoyMDY1MjExMTI3NjQ0MTZAMTQyNjI0OTg3ODA0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Online Passive Learning of Timed Automata for
Cyber-Physical Production Systems

Alexander Maier
Institute of Industrial Information Technologies

Lemgo, Germany
Email: alexander.maier@hs-owl.de

Abstract—Model-based approaches are very often used for
diagnosis in production systems. And since the manual creation
of behavior models is a tough task, many learning algorithms
have been constructed for the automatic model identification.
Most of them are tested and evaluated on artificial datasets
on personal computers only. However, the implementation on
cyber-physical production systems puts additional requirements
on learning algorithms, for instance the real-time aspect or the
usage of memory space. This paper analyzes the requirements on
learning algorithms for cyber-physical production systems and
presents an appropriate online learning algorithm, the Online
Timed Automaton Learning Algorithm, OTALA. It is the first
online passive learning algorithm for timed automata which in
addition copes without negative learning examples. An analysis
of the algorithm and comparison with offline learning algorithms
completes this contribution.

I. MOTIVATION

The usage of model-based diagnosis approaches requires
the existence of a behavior model. Often, these models are
available as Statecharts or Finite Automata, which are created
manually. But the automatic identification of Deterministic
Finite Automata (DFA) is also an active research field. Several
algorithms exist to learn DFAs from sampled data. Addition-
ally algorithms for the identification of subclasses of the DFA
as the Probabilistic Deterministic Finite Automaton (PDFA,
e.g [1], [2]) or the Timed Automaton (TA, e.g. [3], [4]).

All of the existing algorithms work in an offline manner,
i.e. the used data is stored in a database and is available for
multiple usage during the learning process. However, the usage
of learning algorithms in cyber-physical production systems
puts additional requirements on the algorithms, for instance
the real-time aspect. The data can be accessed only once. In
one step this data sample has to be included into the model.
Additionally, the algorithm has to work passively, i.e. the data
have to be taken as they appear. This leads to the necessity of
an online passive learning algorithm, which so far not exists.

To close this gap, this paper introduces an online learning
algorithm for Timed Automata. To the best of our knowledge
this is the first online passive learning algorithm for the
identification of Timed Automata.

The rest of the paper is structured as follows: In section
II a classification of learning algorithms is given and then
some examples of learning algorithms for each type. After
this, some requirements for learning algorithms in cyber-
physical production systems are listed. Section III introduces

the algorithm OTALA which is especially developed for the
usage in cyber-physical production systems. In section IV the
algorithm is evaluated and discussed from a practical point
of view and an application scenario is given. Section V finally
concludes the contribution and gives an outlook to future work.

II. CLASSIFICATION OF LEARNING ALGORITHMS FOR
DFAS

Several formalisms exist to learn DFAs and its subclasses
(e.g. Timed Automata). They can be roughly distinguished by
following features:

• Passive or active learning: While passive learning al-
gorithms have to cope with a given set of observations
to learn the model, active learning algorithms can ask
for additional observations, if needed. Active learning
algorithms often imply a teacher-student relationship.

• Offline or online learning: Offline learning algo-
rithms can apply preprocessing during the learning
process since the data is stored and it is possible to
access the data multiple times. Online learning is more
real-time critical. Here, the algorithms are allowed to
access the data only once. In one step this data sample
has to be included into the model.

• The usage of only positive or both positive and
negative examples: Some algorithms use both pos-
itive and negative data. In the context of grammar
learning a positive example is a word accepted by the
target language, on the contrary a negative example
is not accepted. Within the scope of cyber-physical
production systems it is not easy or even not possible
to get or generate negative examples. Therefore, in
this contribution we focus on algorithms, which learn
based on positive examples only.

• Allowing don’t-care states or not: So far, this
criterion was not considered for the classification of
learning algorithms. Algorithms which use incoming
and outgoing events and event sequences for the state
equivalence check usually have don’t-care states since
it may become possible to reach a state using different
paths. To avoid don’t-care states the algorithm should
check the state information itself (e.g. the signal
vector).

In the literature the terms active and online are often
mixed up. The reason is that usually active learning algorithms

work in an online manner and vice versa. Though, in this
contribution, we introduce a learning algorithm which learns
in an online and passive manner.

A. Offline passive model learning

Offline learning algorithms have to cope with a given set
of observations. The general offline learning methodology,
following the state merging method, is displayed in figure 1:

Data
Measure-

ments

Data
Acquisition

Prefix
Detection

State
Merging

1

2

3

Fig. 1. The general offline learning methodology.

In step (1) the system is observed and the data are stored
into a database.

In step (2) the prefix tree acceptor is created. Beginning
with an initial state, with each discrete event a new state is
created. The first observation cycle leads to a linked list. The
following cycles again begin with the initial state. As far as
the prefix is equal, the states and events are followed. When
at some point an event is observed which is not an outgoing
event from the current state, a new transition and a new state
are created. The prefix tree acceptor stores the event paths in
a dense form since every prefix is stored only once.

In step (3) each pairs of states are checked for compat-
ibility. If a compatible pair of states is found, the states are
merged. This is done to obtain a generalized automaton which
abstracts the behavior of the observed system.

Several existing algorithms learn an automaton in an offline
manner. They all proceed in the described steps but have
different compatibility checks for state merging and different
merging strategies.

Alergia [1] identifies a PDFA. For the compatibility check
the Hoeffding bound [5] is used.

MDI (Minimal Divergence Inference) [2] also identifies a
PDFA and uses a global merging criterion. It calculates the
entropy of the current automaton and after a possible state
merge. The state merge is rejected if the new automaton has
a significantly different entropy and kept otherwise.

RTI+ (Real-Time Identification with only positive exam-
ples) [3] identifies a TA and is based on the red-blue framework
[6]. Additionally to the state merging a splitting operation is
introduced which splits a transition if the resulting subtrees are
significantly different.

In contrast to the three aforementioned algorithms which
work in a top-down manner, BUTLA (Bottom Up Timing
Learning Algorithm) [4], which identifies a TA, uses the
bottom-up strategy to search for compatible states in the
prefix tree acceptor. This results in a speed increase. Similar
to Alergia, the Hoeffding Bound is used to determine the
compatibility of states.

B. Online active model learning

Online active learning is also often referred to as query
learning. This implies a student-teacher relationship. The stu-
dent (learner) can make a query to the teacher (oracle). This
query can either be a question whether a certain sample is
accepted by the target language (answer: yes or no) or whether
the hypothesis is consistent with the target model (answer: yes
or counterexample). Figure 2 illustrates the difference between
active and passive learning according to [7].

World Passive
Learner

Model or
Classifier

Data Output

World Active
Learner

Model or
Classifier

Response

Output
Query

Fig. 2. Difference between active and passive learning [7].

Angluins L* [8] is one of the first and most famous online
active algorithms which learns a DFA. The learning operates
as illustrated in figure 2.

Grinchtein introduced an online active learning algorithm
for timed target languages identifying event-recording au-
tomata (ERA) [9]. The algorithm works similar to L*.

C. Online passive model learning

To the best of our knowledge so far no algorithm for
the online passive learning of timed automata exists which
in addition gets along with only positive examples.

D. Requirements for model learning in cyber-physical produc-
tion systems

The implementation of learning algorithms on cyber-
physical production systems as a network of interacting ele-
ments with physical input and output instead of as standalone
devices [10], [11] puts several requirements on the algorithms
which are mainly:

• Economical usage of memory space: The imple-
mentation of learning algorithms on cyber-physical
systems requires an economical use of memory space.
Due to the limited memory space the observations
can not be stored (as it is required by offline learning
algorithms) but rather every data sample has directly
to be included into the model. This leads to the need
of online learning algorithms.

• Real-time capability: The real-time capability is
an important requirement for the learning in cyber-
physical systems. Since the incoming data can not be
stored, the implementation has to be able to handle
the data stream in real-time, i.e. each data sample has
to be included into the model before the next data
sample arrives.

• No expert knowledge: Further, it is required that as
little as possible expert knowledge is used. Offline
learning algorithms still need some expert knowledge:
at least the learning cycles have to be recorded. Here,
the user of the learning algorithm usually has no
knowledge about the amount of data which is needed
to learn a correct automaton. The main advantage
of our proposed algorithm is that it copes without
expert knowledge. Additionally, the implementation
can be operated by untrained personnel: The algorithm
recognizes itself when the learning process is finished.

• Active learning is not possible: Learning in cyber-
physical production systems cannot be performed us-
ing an active learning algorithm since there is no
possibility to ask for samples. The data has to be taken
as it comes. Additionally, there is no oracle (teacher)
which can tell whether the hypothesis is correct and
eventually return a counterexample.

III. ONLINE PASSIVE LEARNING OF TIMED AUTOMATA

In the previous section we have seen that offline learning
algorithms for timed automata such as BUTLA [4] or RTI+
[3] have two main drawbacks:

1) Memory space is needed to store the observations.
2) At least for the recording and determining the number

of observations some expert knowledge is needed.

To overcome these drawbacks in this section a passive on-
line learning algorithm, the Online Timed Automaton Learning
Algorithm (OTALA) is introduced. The main idea behind the
learning algorithm is the assumption that each signal vector of
the inputs/outputs represents a specific state in the automaton.

A. Timed Automaton Formalism

Alur introduced the formalism of Timed Automata [12].
Here, we modify the formalism for our purpose. According
to Alur’s definition the states hold no information about the
value of certain signals (in cyber-physical production systems:
actuators and sensors). Our formalism is modified to capture
the signal vector as state information.

Definition 1: A Timed Automaton is a 4-tuple A =
(S,Σ, T, δ), where

• S is a finite set of states. Each state s ∈ S is a tuple
s = (id,u), where id is a current numbering and
u = (io1, io2, ..., io|Σ|)

T is a vector, which indicates
for each IO value, whether it is active (ion = 1) or
inactive (ion = 0).

• Σ is the alphabet, the set of events.

• T ⊆ S × Σ × S gives the set of transitions. E.g. for
a transition 〈s, a, s′〉, s, s′ ∈ S are the source and
destination state and, a ∈ Σ is the trigger event.

• A transition timing constraint δ : T → I , where I is
a set of intervals. δ always refers to the time spent
since the last event occurred. It is expressed as a time
range or as a probability density function (PDF), i.e.
as probability over time.

The modified Timed Automaton does not need an initial
state as the original Timed Automaton does. Since the state
is defined over the active/inactive IO values, the starting point
is the state corresponding to the actual system’s configuration.
Further, due to the infinite operation of the system the set of
final states is not needed either. Finally, the modified timed
automaton does not need multiple clocks. Instead, only one
clock is used which is reset with each firing of a transition,
which results in relative time since the entering of states.

B. Learning Algorithm

The key question for automata learning algorithms is about
the compatibility of states. Offline algorithms use the event
sequences of the postfixes to determine the compatibility of
states. However, learning the automaton in an online manner,
we have to refer to other information. Therefore, the learning
algorithm OTALA is mainly based on the following assump-
tion:

Assumption 1: Each state in the observed cyber-physical
production system can be described by the signal vector of
the inputs/outputs and corresponds to one state in the final
automaton.

This assumption is necessary, since during runtime the
compatibility of states has to be determined and, especially
at the beginning, no information about event sequences is
available.

A similar idea is taken up by [13]. They also provide a
learning algorithm, which however can not be used in an online
manner. Following this assumption, the emergence of don’t-
care states is avoided.

The algorithm OTALA works as follows (see also figure
3 and algorithm in figure 4): For each observed event it is
checked whether the configuration u(t) has been observed
before and is stored in a state s (line 3). If such a state does
not exist it is created with a corresponding transition (lines
13 - 17), otherwise it is checked whether a transition from
the current to the new state exits. If a corresponding transition
exists, the timing information (e.g. interval with the minimum
and maximum time stamp) is updated (lines 5 - 6) otherwise
a new transition is created (lines 7 - 9). After each step it is
checked whether the learning converged to the final automaton
(lines 18 - 20) and if it converged, the identified automaton is
returned.

C. Convergence Criterion

Offline learning algorithms suffer from the point of detec-
tion of learning convergence. The data have to be acquired
before learning the automaton. The needed amount of data is
unknown beforehand. Thus, often too little data is acquired or,

observed signal vector
u=(S1, S2, S3, S4)

0110

0111

0101

1110

S3=0

0110

0111

0101

S3=0

0110

0110

0111

Fig. 3. The OTALA learning methodology.

Algorithm OTALA (Σ, U):
Given: Observations U = {u0, . . . , un−1} where ui is one IO vector
Result: Timed Automaton A

(1) while newObservationExists()
(2) for all s ∈ S
(3) if u(t) == u(s)
(4) stateExists = true
(5) if transitionExits()
(6) adaptTimingInformation(t)
(7) else
(8) createNewTransition(currentState, t(j), s)
(9) end if
(10) end if
(11) currentState = s
(12) end for
(13) if !stateExists
(14) snew = createNewState()
(15) createNewTransition(currentState, t(j), snew)
(16) currentState = snew

(17) end if
(18) if learningConverged()
(19) return A
(20) end if
(21) end while
(22) return A

Fig. 4. Online timed automata learning algorithm OTALA.

to be on the safe side, more data is acquired then actually is
needed. A special feature of the OTALA algorithm is that it
autonomously recognizes when the learning process is finished.

The learning progress can be measured based on the
following characteristics:

1) Number of states: During the learning process the

number of states is continuously growing. Whenever
a new state is observed, which is not available in the
model, it is added to the model.

2) Number of transitions: Additionally, the number of
transitions has to be considered. Even when no states
are added anymore, still transitions between states can
be added.

3) Changing (enlarging) the time bounds: Finally, the
changing of the time bounds has to be considered.
Even when no states and transitions are added to the
model anymore, still the time bounds (the minimum
and maximum time value for each transition) can be
changing.

The learning can be considered as finished, when no more
states and transitions are added to the model and when the time
bounds of the transitions do not change anymore. In practice,
this is not easy to decide, since of course we cannot look into
the future and therefore we cannot know if one of the values
will change in the future.

So we have to decide based on the past, whether learning is
finished. If for a certain amount of time nothing changed, the
learning process can be considered as finished. The question
here is: What does ”certain amount of time” mean?

Figure 5 shows a typical model convergence curve, where
the number of changes (states, transitions, timing) is plotted
against the running number of incoming events.

0 2000 4000 6000 8000 10000
0

30

60

90

120

150

180

events

ch

an
ge

s

convergence

Fig. 5. The model changing curve and learning convergence for a test data
set.

A trivial yet efficient possibility is to consider the last
nconv samples and check whether the model has been changed
concerning the characteristics in the aforementioned enumer-
ation. The value nconv can be chosen arbitrarily, a good
choice is dependent on the observed process. However, setting
nconv = 1000 is empirically in most cases a good choice.

Another method takes the variable number of states into
account. For this, the number of states is multiplied with a
factor fconv which also can be chosen arbitrarily. fconv ≈ 50
in most cases is a good choice. Hence, the learning converged
if the last nconv = |S|·fconv events didn’t contain any changes.
Indeed, beginning with the learning process, the value of nconv
has to be set to an initial value, e.g. nconv = 200 such that
the learning does not abort too early as long as the number of
states is small.

D. Runtime Analysis

The reader may has noticed that the runtime is exponential.
Applying assumption 1, the number of possible states is given
by the number of possible combinations of each input and
output signals: |S| = 2|IO|. In each learning step, all possible
states have to be checked for equivalence. Therefore, the worst
case runtime for each incoming event is in O(2|IO|).

To obtain a model with the worst case number of states we
used the drunken sailor simulation (a random walk) to generate
a model such that each state in a discrete state space will
be visited at some point in time. Figure 6 shows the runtime
behavior of the model learning of the drunken sailor simulation
with 10 signals. The total number of states is |S| = 210 =
1024. The growing number of states is shown in Figure 7.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

events

le
ar

n
in

g
ti

m
e

p
er

 e
ve

n
t

Fig. 6. Runtime behavior of OTALA.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

200

400

600

800

1000

1200

events

st

at
es

Fig. 7. Convergence behavior of OTALA.

In practice however, the systems show a better behavior.
Often signals are only switched on and off together in a pair
or group (e.g. two conveyor belts to transport something) or
combinations of signal groupings can be precluded (e.g. the
filling of a container can only be started if the container is not
full). For each excluded combination possibility the number
of possible states reduces by half. This reduces the runtime of
the learning process.

The runtime also can be reduced, if more memory space is
used. For each possible state, memory space is allocated and
the state ID corresponds to the decimal representation of the
IO-vector. During runtime of the algorithm, it is not necessary
to iterate over all possible states, just the IO-vector has to

be converted into a decimal number and the corresponding
memory space has to be addressed. The drawback of this
method is the high amount of needed memory space and in
usual cases, it is not used at all, but since the number of IOs is
known beforehand, the needed amount of memory space can
be predetermined.

The difference between the space and time optimized ver-
sion of OTALA can be seen in figure 8. Here, the cumulative
runtime over all incoming events is used. Both show a rather
linear runtime behavior, the time optimized version runs about
10 times faster. The time optimized allocates the maximum
amount of space at the beginning, even if it is not needed,
whereas the space optimized version only allocates memory
space when it is necessary.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

events

ru
n

ti
m

e

runtime (space optimized)

runtime (time optimized)

Fig. 8. Difference between the space and time optimized version of OTALA.

IV. EVALUATION AND DISCUSSION

In this section the application point of view is used to
evaluate the usability of OTALA. For this, representative for
other offline learning algorithms, the offline learning algorithm
BUTLA (see section II-A) is used for comparison. For a
comprehensive evaluation of BUTLA with other algorithms,
please refer to [14].

A. Online vs. offline learning algorithm

The learning time of online and offline learning algorithms
cannot directly be compared. As showed before, the learning
time of OTALA is exponential in the number of IOs, while
the runtime of BUTLA is cubic in the number of states in the
prefix tree acceptor (the number of states in the prefix tree
acceptor grows with the amount of observations).

BUTLA works best if the learning data is separated into
cycles such that the prefix tree acceptor is highly condensed.
However, this often cannot be guaranteed for cyber-physical
production systems. In that case the prefix tree acceptor can
consist of far more than one hundred thousand of states in a
linked list. And since the learning time is cubic in the size of
the prefix tree acceptor, this would lead to a high computation
time.

In contrast, the runtime of OTALA is only based on the
number of IOs and not on the amount of data. Therefore, the
cumulated learning time over the samples is rather linear (as
can also be seen in figure 8). In cyber-physical production

TABLE I. COMPARISON OF OTALA WITH OFFLINE LEARNING
ALGORITHM (E.G. BUTLA)

OTALA offline
not possible to use expert

knowledge + -

limited memory space + -
amount of needed learning data

is not known beforehand + -

observations can not be separated into
cycles automatically + -

small number of signals + +
data can be separated into

cycles + +

huge number of signals - +
states do not correspond to

signal vectors - +

systems, the number of IOs is known beforehand. Therefore,
the needed learning time can roughly be predicted. Addi-
tionally, in most cases, the number of IOs is limited to a
small number. This makes OTALA applicable, despite the
exponential runtime. If more space can be used, the runtime
further can be reduced.

Furthermore, OTALA is able to stop the learning process
if the identified model converged to the target model, such that
not all data have to be considered for learning.

Summarized, comparing online (OTALA) and offline
(BUTLA) learning algorithms, the following recommendations
can be given:

Use an online learning algorithm (e.g. OTALA), when:

• memory space is limited, such that the observations
cannot be stored,

• it is not possible to use expert knowledge at all,

• the number of needed learning samples and the con-
vergence of learning progress is not known beforehand
or

• the observations can not be separated into cycles
which form a dense prefix tree acceptor.

On the contrary, use an offline learning algorithm (e.g.
BUTLA), when:

• the number of signals is huge,

• the states of the target model can not be described by
signal vectors and equal events can arise subsequently
or

• the learning data can be separated into cycles.

Table I summarizes the comparison of the online learning
algorithm OTALA with the offline learning algorithm BUTLA.

B. Use Case

For the evaluation of the learning algorithm we used an
experimental production plant in our institute, the smart factory
(see figure 9). It is an exemplary plant which uses different
techniques to transport and store bulk material, to fill it in
bottles and finally use for production.

The identified models have been used for anomaly detec-
tion. For this, the behavior of the running production system

Fig. 9. Smart Factory as exemplary plant for experiments.

is compared with the prediction of the identified model. A
difference hints at an anomaly [4].

For the evaluation, a part of the smart factory has been
used. It comprises 10 IOs (6 inputs, 4 outputs). In a large-
scale experiment in which the amount of data was extended
by simulation, 5000 production cycles have been generated.
An expert of the smart factory guessed that 200 production
cycles should be enough to identify a correct behavior model.
To keep the scenario realistic, only the first 200 samples were
used by BUTLA to learn a model. OTALA needed 500 samples
to converge. Both OTALA and BUTLA identified a model with
15 states.

Then, 3000 positive and 100 negative samples where used
for anomaly detection. The result is given in the confusion
matrix (according to [15]) in Table II.

• True Positives (TP) are samples, which are really
anomalous and detected as such by the anomaly
detection algorithm.

• False Positives (FP) are samples that are free of
anomalies, but recognized as anomalous.

• False Negatives (FN) samples contain anomalies,
which are not detected by the algorithm.

• True Negatives (TN) are really normal samples that
are recognized as such by the algorithm.

The accuracy is calculated as:

Accuracy =
fTP + fTN

fTP + fTN + fFP + fFN
(1)

TABLE II. CONFUSION MATRIX FOR EXPERIMENT IN THE SMART
FACTORY.

true true false false
positive negative positive negative
fTP fTN fFP fFN Accuracy

OTALA 100% 98% 2% 0% 99%
BUTLA 100% 76% 24% 0% 88%

It can be seen, that all inserted errors could be found
with both identified models (100% true positives and 0%
false negative). However, since BUTLA used too little learning
examples, the value for false positives is very high (24%). This
clarifies the problem that is not known in advance how many
samples are needed for learning. The number of false positives

for OTALA is smaller (2%) since the learning converged and
only some outliers have not been used for learning.

In the experiment we used only 200 samples for learning
the model with BUTLA, because this number was guessed by
an expert. This amount of data was not sufficient to converge,
and therefore, the accuracy is worse than using OTALA (which
learned until convergence). However, using the same number
of learning samples for BUTLA, it reaches the same accuracy
as OTALA.

It can be seen, that both algorithms produce good results,
but it reveals the weakness of BUTLA: It is not possible to
determine how many learning samples are required to learn a
correct model, whereas OTALA is able to recognize conver-
gence autonomously and therefore uses the minimum number
of learning samples only. Therefore, OTALA is especially
suited for the case if only little knowledge about the process
is available.

The exponential runtime of OTALA means that it is not
suited for systems with a high amount of IOs. Nevertheless,
according to [4] and [13] it is not useful to learn one overall
model for the whole system but rather for subsets of the IOs.
That means, that only those signals are used to learn a model,
which belong to the same subprocess. This again reduces the
number of used signals and makes OTALA applicable.

V. CONCLUSION

In this contribution we presented OTALA, the first online
passive learning algorithm for timed automata. A special focus
lies on the applicability for the learning of the timing behavior
of cyber-physical production systems. The algorithm only
needs positive examples, which means that no observations
of faulty behavior are needed, which are hardly producible in
technical systems.

A possible application might look like this: OTALA is
used to learn a behavior model of the production system. The
learning itself runs without expert knowledge, as well as the
detection of convergence. After finishing the learning process,
it can be switched automatically to anomaly detection. Here,
an algorithm as proposed in [4] can be used.

We showed that, although the worst case runtime is ex-
ponential, due to the limited number of IOs, OTALA is still
applicable for the learning of timed behavior in cyber-physical
production systems. The runtime further can be reduced by
using more memory space. Since the number of IOs is known
beforehand, the runtime per event and the overall memory
consumption can be predetermined.

So far, OTALA works with discrete signals only, i.e.
it learns a discrete Timed Automaton. In future work, the
algorithm will be extended to the learning of hybrid Timed
Automata including continuous signals into the states.

ACKNOWLEDGMENT

The research for this paper is funded within the
AVA project by the ”Bundesministerium für Bildung und
Forschung” in Germany.

REFERENCES

[1] R. C. Carrasco and J. Oncina, “Learning stochastic regular grammars
by means of a state merging method,” in GRAMMATICAL INFERENCE
AND APPLICATIONS. Springer-Verlag, 1994, pp. 139–152.

[2] F. Thollard, P. Dupont, and C. de la Higuera, “Probabilistic DFA
inference using Kullback-Leibler divergence and minimality,” in Proc.
of the 17th International Conf. on Machine Learning. Morgan
Kaufmann, 2000, pp. 975–982.

[3] S. Verwer, “Efficient identification of timed automata: Theory and
practice,” Ph.D. dissertation, Delft University of Technology, 2010.

[4] A. Maier, O. Niggemann, A. Vodenčarević, R. Just, and M. Jaeger,
“Anomaly detection in production plants using timed automata,” in 8th
International Conference on Informatics in Control, Automation and
Robotics (ICINCO). Noordwijkerhout, The Netherlands, Jul 2011.

[5] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. pp. 13–30, 1963.

[6] K. Lang, B. Pearlmutter, and R. Price, “Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging
algorithm,” 1998.

[7] S. Tong, “Active learning: Theory and applications,” Ph.D. dissertation,
Stanford University, Stanford, CA, USA, 2001.

[8] D. Angluin, “Learning regular sets from queries and counterexamples.”
Inf. Comp., pp. 75(2):87–106, 1987.

[9] O. Grinchtein, B. Jonsson, and M. Leucker, “Learning of event-
recording automata,” in In 6th International Workshop on Verification of
Infinite-State Systems, volume 138/4 of Electronic Notes in Theoretical
Computer Science. Springer, 2004, pp. 379–395.

[10] E. Lee, “Cyber physical systems: Design challenges,” in Object Ori-
ented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, 2008, pp. 363–369.

[11] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: The next computing revolution,” in Proceedings of the 47th
Design Automation Conference, ser. DAC ’10. New York, NY, USA:
ACM, 2010, pp. 731–736.

[12] R. Alur and D. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. vol. 126, pp. 183–235, 1994.

[13] M. Roth, S. Schneider, J.-J. Lesage, and L. Litz, “Fault detection and
isolation in manufacturing systems with an identified discrete event
model,” Int. J. Systems Science, vol. 43, no. 10, pp. 1826–1841, 2012.

[14] A. Vodenčarević, A. Maier, and O. Niggemann, “Evaluating learning
algorithms for stochastic finite automata,” in 2nd International Con-
ference on Pattern Recognition Applications and Methods (ICPRAM
2013); Barcelona, Spain, Feb 2013.

[15] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2005.

View publication statsView publication stats

https://www.researchgate.net/publication/268800304

