
DEVOPS DELIVERED

WELCOME TO NOMAD HANDS-ON TRAINING!

Anubhav Mishra
Developer Advocate, HashiCorp
@anubhavm

Agenda

1. Architecture Overview

2. Installing and Configuring Nomad

3. Creating and Running Jobs

4. Service Discovery with Consul

5. Operating Nomad

6. Interacting with the HTTP API

7. Advanced Job Strategies

Workstations

Claim your workstation!

https://hashi.co/nomad-hands-on-oscon

https://hashi.co/nomad-hands-on-oscon

Introduction

Nomad Powers Application Deployment

Application Delivery Lifecycle

Nomad's Goals

Treat entire data center as a collection of resources

Support non-containerized workloads

Achieve massive scale and speed

Cross-platform portability

Support heterogeneous workflows

Nomad
Million Container
Challenge

1,000 Jobs

1,000 Tasks per Job

5,000 Hosts on GCE

1,000,000 Containers

“640 KB ought to be enough for anybody.”

- Bill Gates

2nd Largest Hedge Fund

18K Cores

5 Hours

2,200 Containers/second

Nomad vs. Other Tools

Schedule multiple workload types: VMs, containers, binaries, etc

Optimistically concurrent to schedule faster and at greater scale

Globally-aware with multi-region and multi-datacenter support

Operationally simple

Integration into the HashiCorp ecosystem

Glossary

Glossary

Node

Physical or virtual machine in the cluster. In the context of Nomad,
a node is a machine running the Nomad agent.

Glossary

Agent

Long-running daemon on every member of the Nomad cluster. The
agent is able to run in either client or server mode.

Glossary

Agent (Client)

Agent that fingerprints the host to determine capabilities,
resources, and available drivers.

Glossary

Agent (Server)

Agent that holds the global state of the cluster and participates in
scheduling decisions.

Glossary

Job

Definition of how a workload should be scheduled. The job
specification is composed of one or more task groups, and each
task defines a series of resource constraints and configuration.

Glossary

Job File

HCL or JSON configuration file on disk which describes how a
workload should be scheduled.

Glossary

Driver

Pluggable components that execute a task and provide resource
isolation. Example drivers include docker, java, and raw-exec.

Glossary

Task

A command, service, application or "set of work" to execute. Tasks
are executed by their driver.

Glossary

Task Group

A collection of individual tasks that should be co-located on the
same node. This is especially useful for applications that require
low latency or have high throughput to another application.

Glossary

Evaluation

A calculation performed by the Nomad servers to determine what
action(s) need to take place to execute a job.

Glossary

Allocation

An instance of a task group placed on a node. Allocations can fail
(not enough memory, node is down, etc).

Glossary

Datacenter

Networking environment that is private, low latency, and high
bandwidth. Example datacenters include the us-east-1 or us-
west-1.

Glossary

Region

Collection of multiple datacenters, typically grouped
geographically. For example, the north-america region might
include the us-east-1 and us-west-1 datacenters.

Glossary

Consensus

Agreement upon the elected leader.

Glossary

Gossip

Random node-to-node communication primarily over UDP that
provides membership, failure detection, and event broadcast
information to the cluster. Built on Serf.

Glossary

Bin-Packing

A algorithm which optimizes the resource utilization and density
of applications, but is also augmented by affinity and anti-affinity
rules.

Architecture

Single Region Architecture

SERVER SERVER SERVER

CLIENT CLIENT CLIENT
DC1 DC2 DC3

FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION
FORWARDING

RPC RPC RPC

Multi-Region Architecture

SERVER SERVER SERVER
FOLLOWER LEADER FOLLOWER

REPLICATION
FORWARDING

REPLICATION

REGION B
GOSSIP

REPLICATION REPLICATION
FORWARDING

REGION FORWARDING

REGION A

SERVER
FOLLOWER

SERVER SERVER
LEADER FOLLOWER

100’s of Regions

10,000’s of Clients per Region

1000’s of Jobs per Region

Installing & Configuring

Single Binary

Client Server

Agent Functionality (Client)

Fingerprint to determine resources and capabilities of each host

Send node information to the central server cluster

Heartbeat to provide liveness

Run any tasks assigned by the central server cluster

Agent Functionality (Server)

Store resource, capability, and availability of each host

Schedule workloads

Participate in leader election and state replication (consensus)

Discover other Nomad servers (gossip)

Terminal

$ nomad agent -config=/path/to/config.hcl

Terminal

$ nomad agent -config=/path/to/config.hcl -config=/path/to/more/config.hcl

Bootstrapping Nomad

Bootstrapping Nomad

There are two common strategies for bootstrapping a Nomad
cluster: automatic and manual.

We will walk through the manual steps first, then automatic.

Bootstrapping Nomad: Manual

Chicken-and-egg problem: requires one server IP

The bootstrap_expect field tells how many servers to reach quorum

This server IP is specified in a configuration file or used with the nomad
server join command

Clients specify server IPs via configuration file

Requires human involvement

/etc/nomad.d/config.hcl

server {
 enabled = true
 bootstrap_expect = 3

 # This is the IP address of the first server we provisioned
 retry_join = ["<known-address>:4648"]
}

Terminal

$ nomad server join <known-address>

client-config.hcl

client {
 enabled = true
 servers = ["<known-address>:4647"]
}

Bootstrapping Nomad: Automatic

Leverages another open source tool - Consul

The bootstrap_expect field tells how many servers to reach
quorum

Nomad assumes the Consul agent is accessible on the local IP and
port, but this is configurable

Fully automated and scalable

server-config.hcl

server {
 enabled = true
 bootstrap_expect = 3
}

client-config.hcl

client {
 enabled = true
}

consul.hcl

consul {
 # The address to the Consul agent.
 address = "127.0.0.1:8500"

 # The service name to register the server and client with Consul.
 server_service_name = "nomad"
 client_service_name = "nomad-client"

 # Enables automatically registering the services.
 auto_advertise = true

 # Enabling the server and client to bootstrap using Consul.
 server_auto_join = true
 client_auto_join = true
}

Exercise: Connect to Workstation

Go to: https://hashi.co/nomad-hands-on-oscon and claim a
workstation IP.

SSH into your workstation using the provided credentials.

ssh nomaduser@<your.ip.address>  
password: oscon2018

Change directory into /workstation/nomad.

https://hashi.co/nomad-hands-on-oscon

Creating & Running Jobs

Nomad Jobs

Jobs specifications are defined in HCL or JSON, but we will use HCL
for this training.

An example can be generated by running nomad init.

Nomad Job Types

Nomad has three scheduler types that can be used when creating
your job: service, batch, and system.

Nomad Job Types: Service

Service Scheduler Job Type

The service scheduler is designed for scheduling long-lived services
that should never go down. The service scheduler ranks a large
portion of the nodes that meet the jobs constraints and selects
the optimal node to place a task group on.

Examples: webapp, redis

Nomad Job Types: Batch

Batch Scheduler Job Type

Batch jobs are less sensitive to short-term performance
fluctuations and are short lived, finishing after some period.

Examples: billing, data replication

Nomad Job Types: System

System Scheduler Job Type

The system scheduler is used to register jobs that should be run on
all clients that meet the job's constraints. The system scheduler is
also invoked when clients join the cluster or transition into the
ready state.

Examples: logging agent, security auditing tool

Exercise: Run nomad init

Inside the /workstation/nomad folder, run the nomad init
command to generate a sample job file.

Open the resulting file on the workstation in an editor.

Terminal

$ nomad init
Example job file written to example.nomad

Terminal

$ vi example.nomad

Nomad Jobs: Hierarchy

Job

(Group)

Task

 Resources

 Constraint

example.nomad

job "example" {
 # ...
}

example.nomad

job "example" {
 # Run the job in the global region, which is the default.
 # region = "global"

 # ...
}

example.nomad

job "example" {
 # ...

 # Specify the datacenters within the region this job can run in.
 datacenters = ["dc1"]

 # ...
}

example.nomad

job "example" {
 # ...

 # Service type jobs optimize for long-lived services. This is
 # the default but we can change to batch for short-lived tasks.
 # type = "service"

 # ...
}

example.nomad

job "example" {
 # ...

 # Restrict our job to only linux. We can specify multiple
 # constraints as needed.
 # constraint {
 # attribute = "${attr.kernel.name}"
 # value = "linux"
 # }

 # ...
}

example.nomad

job "example" {
 # ...

 # Configure the job to do rolling updates
 update {
 # Stagger updates every 10 seconds
 stagger = "10s"

 # Update a single task at a time
 max_parallel = 1
 }

 # ...
}

example.nomad

job "example" {
 # ...

 # Create a 'cache' group. Each task in the group will be
 # scheduled onto the same machine.
 group "cache" {
 # Control the number of instances of this group.
 # Defaults to 1
 count = 1

 # ...
 }

 # ...
}

example.nomad

job "example" {
 # ...

 group "cache" {
 # ...
 restart {
 # ...
 }

 # Define a task to run
 task "redis" {
 # ...
 }
 }
}

example.nomad

job "example" {
 # ...
 group "cache" {
 task "redis" {
 # Use Docker to run the task.
 driver = "docker"

 # Configure Docker driver with the image
 config {
 image = "redis:latest"
 port_map {
 db = 6379
 }
 }

 service {
 name = "${TASKGROUP}-redis"
 tags = ["global", "cache"]

example.nomad

job "example" {
 # ...
 group "cache" {
 # ...
 task "redis" {
 # We must specify the resources required for
 # this task to ensure it runs on a machine with
 # enough capacity.
 resources {
 cpu = 500 # 500 MHz
 memory = 256 # 256MB
 network {
 mbits = 10
 port "db" {}
 }
 }
 }
 }

Exercise: Delete Example Job File

This job file is just an example, so delete it.

Terminal

$ rm example.nomad

Exercise: Inspect Job File

There is already a job file on the system named http-echo.nomad.

Open and inspect this job file.

About: http-echo

http-echo is a small application that accepts text as a command-
line flag and renders that text as an HTML webpage.

It accept -listen and -text flags.

Example invocation: 
 http-echo -text="hello world"

Terminal

$ http-echo -text="hello world"
Server is listening on :5678

$ curl localhost:5678
hello world

About: http-echo Docker Container

The hashicorp/http-echo Docker container packages the
application in a distributable format.

It accepts the same arguments and flags as http-echo.

Example invocation: 
 docker run hashicorp/http-echo -text="hello world"

About: http-echo Nomad Job

Requests Nomad to download and run a Docker container from the
public docker registry (hashicorp/http-echo).

Configures the container to bind to port 80 on the host.

Registers the service for discovery with Consul with an integrated
health check (more on this later).

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {
 static = 80
 }
 }
}

http-echo.nomad

service {
 name = "http-echo"
 port = "http"

 tags = [
 "anaconda",
 "urlprefix-/http-echo",
]

 check {
 type = "http"
 path = "/health"
 interval = "10s"
 timeout = "5s"
 }
}

Exercise: Run Nomad Job

Submit the http-echo.nomad job to the server for evaluation and
scheduling.

Terminal

$ nomad run http-echo.nomad
==> Monitoring evaluation "89164c43"
 Evaluation triggered by job "http-echo-testing-mongrel"
 Allocation "1c1057f3" created: node "ec255cce", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "89164c43" finished with status "complete"

Exercise: Contact Service

Your instance of http-echo was deployed on the cluster. It may
have been scheduled on any host, so we need to use service
discovery (Consul) to address it.

Use curl to query your instance 
 $(identity).http-echo.service.consul

Terminal

$ curl $(identity).http-echo.service.consul
hello world

Exercise: Change Job

Modify the job file to render your name (or anything you choose)
instead of "hello world".

Resubmit the modified job to Nomad.

Use curl to query the updated instance.

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "hello world",
]
}

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "smiling banana",
]
}

Terminal

$ nomad run http-echo.nomad
==> Monitoring evaluation "c12830a2"
 Evaluation triggered by job "http-echo-testing-mongrel"
 Allocation "30c3ee48" created: node "ec277448", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "c12830a2" finished with status "complete"

Terminal

$ curl $(identity).http-echo.service.consul
smiling banana

Exercise: Scale http-echo Job

Increase the count attribute on the group to "5" to run five
instances of our application.

Resubmit this job for evaluation.

HINT: You may need to add a count attribute or look online at the
documentation.

http-echo.nomad

group "echo" {
 count = "5"

 task "server" {
 driver = "docker"

 config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "smiling banana",
]
 }

 # ...

Terminal

$ nomad run http-echo.nomad
==> Monitoring evaluation "78bd7efb"
 Evaluation triggered by job "http-echo-testing-mongrel"
 Allocation "0c5724a0" created: node "ec255589", group "echo"
 Allocation "5d4dab42" created: node "ec261569", group "echo"
 Allocation "8290a411" created: node "ec255cce", group "echo"
 Allocation "a29935f1" created: node "ec2ee7db", group "echo"
 Allocation "f400c498" created: node "ec277448", group "echo"
 Allocation "781ca69d" modified: node "ec274728", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "78bd7efb" finished with status "complete" but failed to place
all allocations:
 Task Group "echo" (failed to place 4 allocations):
 * Resources exhausted on 6 nodes
 * Dimension "network: reserved port collision" exhausted on 6 nodes
 Evaluation "546caa43" waiting for additional capacity to place remainder

About: Static Ports

Static ports are generally a bad idea in scheduled environments as
they restrict exactly one instance of the job to running per host.

Letting Nomad choose dynamic ports allows for better scale.

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {
 static = 80
 }
 }
}

Remove this line

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":80",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":??",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

Nomad Interpolation

Nomad populates certain variables with information about the job.

Values between ${} are analyzed by the parser.

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":??",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":${NOMAD_PORT_http}",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":${NOMAD_PORT_http}",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":${NOMAD_PORT_banana}",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "banana" {}
 }
}

Exercise: Resubmit Job

Make these required changes to the job.

Resubmit the job to the Nomad server for evaluation.

Use curl to query the updated instance.

HINT: Google "nomad interpolation".

http-echo.nomad

config {
 image = "hashicorp/http-echo:x.y.z"
 args = [
 "-listen", ":${NOMAD_PORT_http}",
 "-text", "hello world",
]
}

resources {
 network {
 mbits = 10
 port "http" {}
 }
}

Terminal

$ nomad run http-echo.nomad
==> Monitoring evaluation "4cf66353"
 Evaluation triggered by job "http-echo-testing-mongrel"
 Allocation "2d1b84a1" created: node "ec255589", group "echo"
 Allocation "5a87dcf3" created: node "ec277448", group "echo"
 Allocation "c8bd019c" created: node "ec261569", group "echo"
 Allocation "64db5ade" created: node "ec255cce", group "echo"
 Allocation "67e19895" created: node "ec2ee7db", group "echo"
 Allocation "7e5803cb" created: node "ec277448", group "echo"
 Allocation "8a82a6b5" created: node "ec274728", group "echo"
 Allocation "2117cf22" created: node "ec2ee7db", group "echo"
 Allocation "52e56b0d" created: node "ec255cce", group "echo"
 Allocation "53528b48" created: node "ec261569", group "echo"
 Allocation "52e56b0d" status changed: "pending" -> "running"
 Allocation "5a87dcf3" status changed: "pending" -> "running"
 Allocation "67e19895" status changed: "pending" -> "running"
 Allocation "7e5803cb" status changed: "pending" -> "running"
 Allocation "c8bd019c" status changed: "pending" -> "running"

Terminal

$ curl $(identity).http-echo.service.consul
curl: (7) Failed to connect to anaconda.http-echo.service.consul port 80:
Connection refused

Why is the Job Inaccessible?

Previously our job was hard-bound to port 80 (default HTTP port).

Now Nomad is dynamically allocating a high-numbered port, so our
service could be listening on any port.

Must rely on service discovery to find the port (which we will
discuss later).

Monitoring Jobs

Command: nomad status

The nomad status command lists the status of all jobs in the
system.

If supplied an optional argument, the nomad status command
lists detailed information about the job name.

Exercise: Run nomad status

Run the nomad status command to see the status of all jobs in
the system.

Run the nomad status command with the name of your job to get
detailed job information.

Terminal

$ nomad status
ID Type Priority Status Submit Date
fabio system 75 running 01/01/17 01:30:10 UTC
hashi-ui system 75 running 01/01/17 01:30:10 UTC
http-echo-llama service 50 running 01/01/17 01:30:10 UTC

Terminal

$ nomad status http-echo-$(identity)
ID = http-echo-llama
Name = http-echo-llama
Submit Date = 01/01/17 01:30:10 UTC
Type = service
Priority = 50
Datacenters = dc1
Status = running
Periodic = false
Parameterized = false

Summary
Task Group Queued Starting Running Failed Complete Lost
echo 0 0 5 0 6 0

Allocations
ID Node ID Task Group Version Desired Status Created At
404add9c fb3eff16 echo 4 run running 01/01/17 01:30:10

Terminal

$ nomad status fabio
ID = fabio
Name = fabio
Submit Date = 01/01/17 01:30:10 UTC
Type = system
Priority = 75
Datacenters = dc1
Status = running
Periodic = false
Parameterized = false

Summary
Task Group Queued Starting Running Failed Complete Lost
fabio 0 0 6 0 0 0

Allocations
ID Node ID Task Group Version Desired Status Created At
10a9306c e1ae29b8 fabio 0 run running 01/01/17 01:30:10

Terminal

$ nomad status fabio
ID = fabio
Name = fabio
Submit Date = 01/01/17 01:30:10 UTC
Type = system
Priority = 75
Datacenters = dc1
Status = running
Periodic = false
Parameterized = false

Summary
Task Group Queued Starting Running Failed Complete Lost
fabio 0 0 6 0 0 0

Allocations
ID Node ID Task Group Version Desired Status Created At
10a9306c e1ae29b8 fabio 0 run running 01/01/17 01:30:10

Exercise: Verify Fabio is Running

We see fabio is running under Nomad.

Fabio is running as a local-exec job (outside of Docker).

Manually verify fabio is running by running ps.

Terminal

$ ps aux | grep fabio
nobody 1640 0.3 0.4 37372 33324 ? Sl 02:57 0:00 fabio

Command: nomad alloc-status

The nomad alloc status displays information about the given
allocation ID, including run status, metadata, and failure
messages.

Exercise: Query Nomad Allocation Status

Find the ID of a running allocation using the nomad status
command.

Query that allocation status using the nomad alloc status
command with the allocation ID.

Terminal

$ nomad status http-echo-$(identity)
ID = http-echo-llama
Name = http-echo-llama
Submit Date = 01/01/17 01:30:10 UTC
Type = service
Priority = 50
Datacenters = dc1
Status = running
Periodic = false
Parameterized = false

Summary
Task Group Queued Starting Running Failed Complete Lost
echo 0 0 5 0 0 0

Allocations
ID Node ID Task Group Version Desired Status Created At
1e6892d3 744e4d82 echo 0 run running 01/01/17 01:30:10

Terminal

$ nomad alloc status 1e6892d3
ID = 1e6892d3
Eval ID = 8a5e22a0
Name = http-echo-llama.echo[2]
Node ID = 744e4d82
Job ID = http-echo-llama
Job Version = 0
Client Status = running
Client Description = <none>
Desired Status = run
Desired Description = <none>
Created At = 01/01/17 01:30:10 UTC

Task "server" is "running"
Task Resources
CPU Memory Disk IOPS Addresses
0/100 MHz 2.2 MiB/10 MiB 300 MiB 0 http: 10.1.1.14:21136

Terminal

$ nomad alloc status 1e6892d3
ID = 1e6892d3
Eval ID = 8a5e22a0
Name = http-echo-llama.echo[2]
Node ID = 744e4d82
Job ID = http-echo-llama
Job Version = 0
Client Status = running
Client Description = <none>
Desired Status = run
Desired Description = <none>
Created At = 01/01/17 01:30:10 UTC

Task "server" is "running"
Task Resources
CPU Memory Disk IOPS Addresses
0/100 MHz 2.2 MiB/10 MiB 300 MiB 0 http: 10.1.1.14:21136

Terminal

$ curl 10.1.1.14:21136
smiling banana

Exercise: Query Nomad Allocation Stats

Find and display the detailed resource statistics on your allocation.

HINT: You may need to pass an extra flag to the alloc status
command.

Terminal

$ nomad alloc status -stats 1e6892d3

Terminal

$ nomad alloc status -stats 1e6892d3

...

Memory Stats
Cache Max Usage RSS Swap
16 KiB 1.3 MiB 1.0 MiB 0 B

CPU Stats
Percent Throttled Periods Throttled Time
0.00% 0 0

...

Command: nomad logs

The nomad logs command can query the stdout and stderr from
your task

Requires an allocation ID

Exercise: Run nomad logs

Run nomad status to get an allocation ID of a running job (or use
the previous one).

Run the nomad logs command to view the most recent output for
that allocation.

Terminal

$ nomad logs 1e6892d3
10.1.1.14:21136 10.1.1.14:50336 "GET / HTTP/1.1" 200 15 "curl/7.47.0" 26.075µs

Resources, Constraints,
and Planning

Command: nomad plan

The nomad plan command invokes the scheduler in a dry-run
mode to show you what will happen if the job was submitted.

The resulting index can be specified when running the job to
ensure no changes have happened.

Terminal

$ nomad plan http-echo.nomad

Terminal

$ nomad plan http-echo.nomad
+/- Job: "http-echo-testing-iguana"
Task Group: "echo" (5 in-place update)
 Task: "server"

Scheduler dry-run:
- All tasks successfully allocated.

Job Modify Index: 287
To submit the job with version verification run:

nomad run -check-index 287 http-echo.nomad

When running the job with the check-index flag, the job will only be run if
the
server side version matches the job modify index returned. If the index has
changed, another user has modified the job and the plan's results are
potentially invalid.

Terminal

$ nomad run -check-index 287 http-echo.nomad

Terminal

$ nomad run -check-index 287 http-echo.hcl
==> Monitoring evaluation "8a87cd9c"
 Evaluation triggered by job "http-echo-testing-iguana"
 Allocation "7b34edb0" modified: node "ec2ee7db", group "echo"
 Allocation "b9d5a1ff" modified: node "ec255cce", group "echo"
 Allocation "f00e188f" modified: node "ec2ee7db", group "echo"
 Allocation "1d843f7c" modified: node "ec255589", group "echo"
 Allocation "259496bf" modified: node "ec261569", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "8a87cd9c" finished with status "complete"

About: Constraints

Constraints are requirements the scheduler must evaluate about
the client such as operating system, architecture, kernel version,
etc.

Constraint requirements can be specified at the job, group, or task
level.

Exercise: Add Constraint Requirement

Add a constraint requirement to the http-echo job which requires
the client kernel to be linux.

Plan this job to see the changes that will take place.

Submit this job to the Nomad server.

http-echo.nomad

job "http-echo-anaconda" {
 #...

 constraint {
 attribute = "${attr.kernel.name}"
 value = "linux"
 }

 group "echo" {
 #...
 }
}

Terminal

$ nomad plan http-echo.nomad
+/- Job: "http-echo-testing-iguana"
+ Constraint {
 + LTarget: "${attr.kernel.name}"
 + Operand: "="
 + RTarget: "linux"
 }
 Task Group: "echo" (5 in-place update)
 Task: "server"

Scheduler dry-run:
- All tasks successfully allocated.

Job Modify Index: 361
To submit the job with version verification run:

nomad run -check-index 361 http-echo.nomad

Terminal

$ nomad run -check-index 361 http-echo.nomad
==> Monitoring evaluation "58394788"
 Evaluation triggered by job "http-echo-testing-iguana"
 Allocation "6704f93f" modified: node "ec277448", group "echo"
 Allocation "b854d9f0" modified: node "ec261569", group "echo"
 Allocation "fc790941" modified: node "ec255589", group "echo"
 Allocation "0d9eb8a6" modified: node "ec274728", group "echo"
 Allocation "28c581c3" modified: node "ec274728", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "58394788" finished with status "complete"

About: Resources

Resources are minimum requirements the task must have to run
on the client such as memory or cpu.

Resource constraints can only be specified on the task.

Exercise: Add Resource Requirement

Add a resource requirement to the http-echo job on the server
task which allocates 50GB of memory.

Plan this job to see the changes that will take place.

Submit this job to the Nomad server.

Inspect the allocation status.

http-echo.nomad

job "http-echo-${identity}" {
 group "echo" {
 task "server" {

 # ...

 resources {
 memory = 50000 # 50GB of RAM

 network {
 mbits = 10
 port "http" {}
 }
 }

 # ...

Terminal

$ nomad plan http-echo.nomad
+/- Job: "http-echo-testing-iguana"
+/- Task Group: "echo" (5 create/destroy update)
 +/- Task: "server" (forces create/destroy update)
 +/- Resources {
 CPU: "100"
 DiskMB: "0"
 IOPS: "0"
 +/- MemoryMB: "10" => "5000"
 }

Scheduler dry-run:
- WARNING: Failed to place all allocations.
 Task Group "echo" (failed to place 4 allocations):
 * Resources exhausted on 6 nodes
 * Dimension "memory exhausted" exhausted on 6 nodes

Terminal

$ nomad run -check-index 373 http-echo.nomad
==> Monitoring evaluation "372f378d"
 Evaluation triggered by job "http-echo-testing-iguana"
 Allocation "1072afb4" created: node "ec255589", group "echo"
 Allocation "1072afb4" status changed: "pending" -> "running"
 Allocation "14e2b099" status changed: "pending" -> "running"
 Allocation "6e6d2c9e" status changed: "pending" -> "running"
 Allocation "d2fd22c1" status changed: "pending" -> "running"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "372f378d" finished with status "complete" but failed to place
all allocations:
 Task Group "echo" (failed to place 4 allocations):
 * Resources exhausted on 6 nodes

Terminal

$ nomad alloc status 1e6892d3
ID = 1e6892d3
Eval ID = fff87c39
Name = http-echo-llama.echo[2]
Node ID = 744e4d82
Job ID = http-echo-llama
Job Version = 3
Client Status = running
Client Description = <none>
Desired Status = run
Desired Description = <none>
Created At = 01/01/17 01:30:10 UTC

Task "server" is "running"
Task Resources
CPU Memory Disk IOPS Addresses
1/100 MHz 2.4 MiB/10 MiB 300 MiB 0 http: 10.1.1.14:21136

Revert Changes

Update the http-echo.nomad file to use the default resource
constraints.

Plan and submit the job.

Service Discovery

Service Discovery

Provide a unified mechanism for addressing services in a
microservices-oriented architecture.

Various techniques exist, but DNS is usually easiest as it requires
zero-touch integration.

Recall: Previously

Previously our http-echo job was hard-bound to port 80, and we
changed that to allow for scale.

We used nomad alloc status to "cheat" and see the port Nomad
chose.

Service discovery is a better solution for identifying and addressing
these microservices as they move throughout the system.

Move Throughout the System?

As jobs are scheduled, their host and port are unpredictable.

Moreover, as hosts join and leave the cluster, jobs may move
throughout the cluster.

Service discovery will adapt to the moving jobs over time, without
human intervention.

About: Consul

Consul is a free and open-source tool by HashiCorp that
implements service discovery.

It uses the RAFT and gossip protocols to reach massive scale.

It has integrations with health checks, so unhealthy services are
not added to the service discovery layer.

Similar client-server model to Nomad.

About: Consul

Even though this is not a Consul course, service discovery is a key
component of a scheduled architecture.

Consul is already configured and running on your workstation on
127.0.0.1:8500.

All Consul queries go through the local agent (do not query the
service directly).

Exercise: Run consul members

Execute the consul members command to list all the cluster
members.

Terminal

$ consul members
Node Address Status Type Build Protocol DC Segment
server-0 10.1.1.104:8301 alive server 0.9.3 2 dc1 <all>
server-1 10.1.2.135:8301 alive server 0.9.3 2 dc1 <all>
server-2 10.1.1.106:8301 alive server 0.9.3 2 dc1 <all>
goldfish 10.1.1.174:8301 alive client 0.9.3 2 dc1 <default>
grasshopper 10.1.2.96:8301 alive client 0.9.3 2 dc1 <default>
llama 10.1.1.14:8301 alive client 0.9.3 2 dc1 <default>

About: Consul DNS Service Discovery

Randomized round-robin to all services that match the query.

Filters based on health checks (unhealthy hosts are not returned
from the query).

"Health" is determined by the application.

About: Consul DNS Service Discovery

Previously we queried $(identity).http-
echo.service.consul.

$(identity) is a tag (services can have zero or more tags).

http-echo is the logical service name (could have more than one).

service is the DNS namespace which queries Consul services.

consul is the DNS suffix which delegates system DNS to Consul.

Terminal

$ curl <tag>.<logical-service-name>.service.consul

Terminal

$ curl $(identity).http-echo.service.consul
curl: (7) Failed to connect to anaconda.http-echo.service.consul port 80:
Connection refused

Terminal

$ dig +short $(identity).http-echo.service.consul
10.1.1.207
10.1.1.116
10.1.2.187

Terminal

$ dig +short SRV $(identity).http-echo.service.consul
1 1 27196 testing-server-0.node.dc1.consul.
1 1 33946 testing-server-0.node.dc1.consul.
1 1 43831 testing-server-2.node.dc1.consul.

Terminal

$ dig +short SRV $(identity).http-echo.service.consul
1 1 27196 testing-server-0.node.dc1.consul.
1 1 33946 testing-server-0.node.dc1.consul.
1 1 43831 testing-server-2.node.dc1.consul.

Terminal

$ curl $(identity).http-echo.service.consul:27196
smiling banana

Terminal

$ curl $(identity).http-echo.service.consul:40633
smiling banana

$ curl $(identity).http-echo.service.consul:40633
smiling banana

$ curl $(identity).http-echo.service.consul:40633
smiling banana

$ curl $(identity).http-echo.service.consul:40633
smiling banana

Lessons: Service Discovery

Scheduled architectures make heavy use of service discovery.

Service discovery is integrated with the health of the application.

Nomad uses Consul for service discovery by default.

Load Balancing

Load Balancing

Load balancing is a close cousin of service discovery.

Allows providing a known URL or path to other services.

Round robin and integrates health checks.

Load Balancing in Nomad

Load balancing in Nomad is possible through the use of fabio, an
open source tool

Fabio integrates with Consul and acts as a load balancer for all
healthy services in a given name.

Consul Connect support coming soon!

http-echo.nomad

job "http-echo-anaconda" {

 service {
 name = "http-echo"
 port = "http"

 tags = [
 "testing-iguana",
 "urlprefix-/http-echo",
]

 check {
 type = "http"
 path = "/health"
 interval = "10s"
 timeout = "5s"
 }
 }

Exercise: Load Balance

Using your local machine's public IP address, visit the /http-
echo URL on port 9999 in your browser.

(9999 is the default fabio port)

HINT: Execute public_ip

Terminal

$ public_ip
52.206.242.2

Visit in Browser

Exercise: Add URL

Add an additional URL suffix where your service should be
addressable.

Resubmit the nomad job.

Visit the URL in your browser.

http-echo.nomad

tags = [
 "testing-iguana",
 "urlprefix-/http-echo",
 "urlprefix-/my-path",
]

Terminal

$ nomad run http-echo.hcl
==> Monitoring evaluation "430abac8"
 Evaluation triggered by job "http-echo-testing-iguana"
 Allocation "f222da9b" created: node "ec255589", group "echo"
 Allocation "7082864e" created: node "ec274728", group "echo"
 Allocation "7b8f25ef" created: node "ec274728", group "echo"
 Allocation "8e45b28d" created: node "ec255589", group "echo"
 Allocation "acddd1ba" created: node "ec255cce", group "echo"
 Allocation "043678c3" created: node "ec277448", group "echo"
 Allocation "092a782c" created: node "ec261569", group "echo"
 Allocation "3cba85a7" created: node "ec261569", group "echo"
 Allocation "6b5efd95" created: node "ec2ee7db", group "echo"
 Allocation "c353d506" created: node "ec2ee7db", group "echo"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "430abac8" finished with status "complete"

Downloading Artifacts

Nomad Artifacts

Many jobs need external files to run such as configuration or the
even the binary itself.

Nomad supports downloading artifacts from many different
sources including S3 buckets, git, and more.

Optional checksum verification can ensure integrity.

Automatically extracts commonly-known archive types.

job "job" {
 group "group" {
 task "task" {
 artifact {
 source = "https://example.com/file.tar.gz"
 }
 }
 }
}

job "job" {
 group "group" {
 task "task" {
 artifact {
 source = "https://example.com/file.tar.gz"
 destination = "/tmp"
 }
 }
 }
}

Templating

Nomad Templating

Nomad can take an input template, apply interpolations, and
produce an output template for a task.

The template responds to signals and handles upstream updates.

Can query data from Nomad, Consul, and Vault.

job.nomad

job "job" {
 group "group" {
 task "task" {
 template {
 data = <<EOH
 bind_port: {{ env "NOMAD_PORT_db" }}
 service_id: {{ key "service/my-key" }}
 EOH
 destination = "local/foo"
 }
 }
 }
}

job.nomad

job "job" {
 group "group" {
 task "task" {
 artifact {
 source = "https://example.com/file.tpl"
 destination = "local/"
 }

 template {
 source = "local/file.tpl"
 destination = "local/file.yml"
 }
 }
 }
}

Advanced Job Strategies

Advanced Job Strategies

Nomad currently supports two advanced job strategies:

• Rolling Upgrades

• Blue/Green & Canary Deployments

Advanced Job Strategies: Rolling Upgrades

Nomad supports rolling updates as a first class feature.

To enable rolling updates a job or task group is annotated with a
high-level description of the update strategy using the update
stanza.

http-echo.nomad

job "http-echo-anaconda" {

 # Add an update stanza to enable rolling updates of the service
 update {
 max_parallel = 1
 min_healthy_time = "30s"
 healthy_deadline = "10m"
 }
…..
 }

Exercise: Add update stanza to http-echo Job

job "http-echo-anaconda" {

 # Add an update stanza to enable rolling updates of the service
 update {
 max_parallel = X
 min_healthy_time = "Xs"
 }
.....
 }

Open http://nomad.hashicorp.live/ in your browser.

http://nomad.hashicorp.live/

Advanced Job Strategies: Blue/Green & Canary

Sometimes rolling upgrades do not offer the required flexibility for
updating an application in production.

Often organizations prefer to put a "canary" build into production
or utilize a technique known as a "blue/green" deployment to
ensure a safe application rollout to production while minimizing
downtime.

http-echo.nomad

job "http-echo-anaconda" {

 update {
 max_parallel = 1
 canary = 5
 min_healthy_time = "30s"
 healthy_deadline = "10m"
 auto_revert = true
 }
…..
 }

Terminal

$ nomad plan http-echo.nomad
+/- Job: “http-echo"
+/- Task Group: "http-echo" (1 canary, 1 ignore)
.....

Terminal

$ nomad status http-echo
ID = http-echo
Type = service
Status = running
Periodic = false
Parameterized = false

Latest Deployment
ID = 32a080c1
Status = running
Description = Deployment is running but requires promotion

Deployed
Task Group Auto Revert Promoted Desired Canaries Placed Healthy
Unhealthy
api true false 1 1 1 1 0

Terminal

$ nomad deployment promote 32a080c1
==> Monitoring evaluation "61ac2be5"
 Evaluation triggered by job "docs"
 Evaluation within deployment: "32a080c1"
 Evaluation status changed: "pending" -> "complete"
==> Evaluation "61ac2be5" finished with status “complete"

Terminal

$ nomad status http-echo

Nomad UI
http://nomad.hashicorp.live/

http://nomad.hashicorp.live/

Demo

Q&A

