

Reinforcement Learning in Logistics – A Warehouse Management Case

Midderbeck | Head of Product | Westphalia DataLab GmbH

Marcus Cramer | Head of Analytics | Westphalia DataLab GmbH

Study

WHAT IS REINFORCEMENT LEARNING?

Prediction

Reinforcement Learning – Just a fancy phrase for supervised learning?

State

Predict the optimal action

Shortcomings of traditional machine learning

Big Data

Human Biases

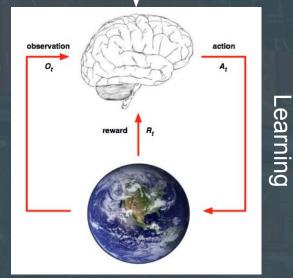
How to label data?

How to label data correctly?

Reinforcement learning – Evolution in silicon

How does evoluation work?

Evolution



How does reinforcement learning work?

Development + tuning

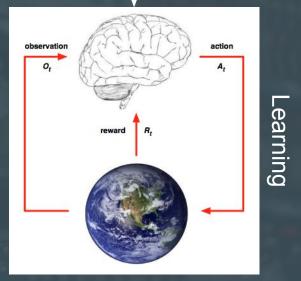


Image sources: http://www.effectiveengineer.com/blog/five-key-skills-of-successful-programmers, UCL course on RL

Key difference between reinforcement learning and supervised learning

Label data

Train Profit

Define world

EXAMPLES OF RL USAGE

RL qualifies as a solution method for different kinds of problems

• • • •

Natural Movement Complex Games Autonomous transportation This is Google's DeepMind AI contraction Image: Contraction of the contrac

https://www.youtube.com/watch?feature=oembed&v= gn4nRCC9TwQ

► H 4) 007/180

https://www.youtube.com/watch?feature=oembed&v=HT-UZkiOLv8

📾 🥥 🖬 🗖 🖸

► ► • • 0.00

https://www.youtube.com/watch?feature=oembed&v=VCdx qn0fcnE

A PRACTICAL EXAMPLE

Windy Gridworld: Reach the goal G asap starting in S

- The state is given by the actual position on the grid
- An action is given by a movement in one of the 4 directions
- Entering a field with a small arrow moves the agent one step upward, 2 steps for the big arrows
- You cannot leave the grid
- The Agent shall be punished for taking too many steps

		t	t	t	1	1	t	
-	1	t	t	t	1	1	t	
1		t	t	t	1	1	t	
S		t	t	t	1	G	t	
		t	t	t	1	1	t	
101		t	t	t	1	1	t	
		t	t	t	1	1	t	

Reward per step = -1

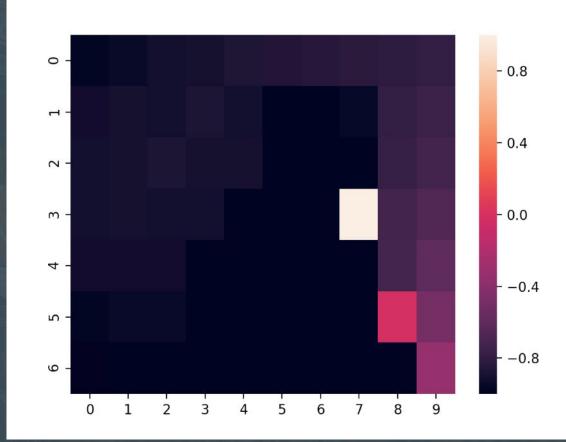
Approach 1: Determine state values and go to the best next state

			t	t	t	-	+	-	+	Value Function
1	+	Ļ	t	t	-	1	1	t	+	value Function
1		Ļ	t	-	t	1	1	t	¥	
S		¥	-	t	t	1	G	t	+	
		-	t	t	t	1	1	t	Ļ	
			t	t	t	1	1	-	+	
			t	t	t	1	1	t	+	

tion				t	t	t	-10	-9	-8	-7
tion	-19	-18	-1 7	t	t	-11	1	1	t	-6
	-20		-16	t	-12	t	1	1	t	-5
	-21		-15	-13	t	t	1	G	t	-4
			-14	t	t	t	1	1	t	-3
<u>م</u>				t	t	t	1	1	0	-2
66				t	t	t	1	1	t	-1

Approach 1: Determine state values and go to the best next state

State values after 1000 iterations



Approach 2: Determine best actions (= policy) directly

			t	t	t	1	1	t	Doliov fur
-	1	+	t	t	t	1	1	t	Policy fur
1		¥	t	t	t	1	1	t	
S		¥		t	t	1	G	t	
		1	t	t	t	1	1	t	
			t	t	t	1	1	t	
		22	t	t	t	1	1	t	

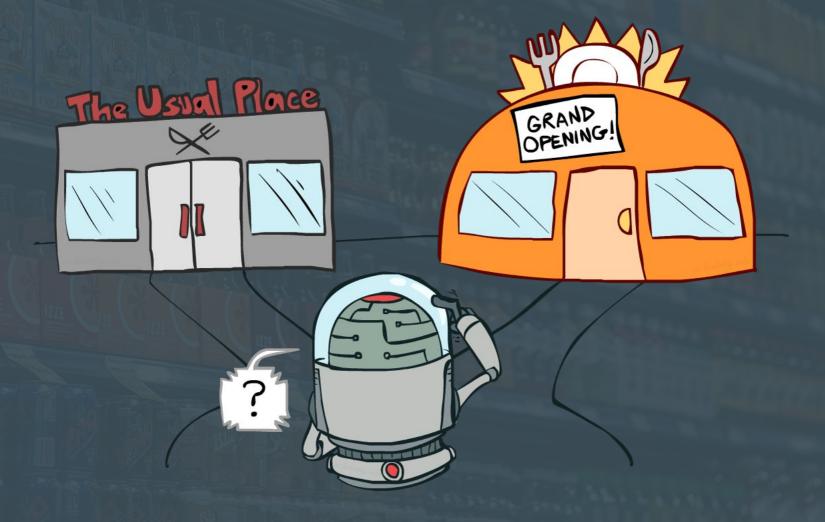
nction			t	t	t	1	1	t	
псион			t	t	t	1	1	t	
			-2	t	t	1	1	t	
	S	-4		-1	ŧ	1	G	t	
	2 X		-3	t	t	1	1	t	
			t	t	t	1	1	t	
12000	-23		t	t	t	1	1	t	

Live Demo

Try it at home!

https://github.com/MarcusCramer91/WindyGridworld

CHALLENGES IN REINFORCEMENT LEARNING



EXAMPLE PROJECT

PROCESS OF WAREHOUSING OPTIMIZATION

Input Data

Reinforcement Learning

Warehousing - Recommendation

Historical ingoing and outgoing deliveries

Historical stock-streams

Product information

Warehouse information

...*more*...

WDL Optimization

- Stochastic Simulation of ingoing and outgoing deliveries
- Modeling of warehouse-state (e.g. stock) as environment
- Usage of Reinforcement Learning, to "learn" from historical ingoing and outgoing deliveries
- Integration of premises to restrict the solution space

Rating of possible warehousing-strategies

Visualization of warehouse-state

Visualization of stock-streams

A LITTLE BIT OF CODE...

class BaseEnvironment:

def __init__(self, initialState, transitionFunction, resetter, timeCounter):
 self.state = initialState
 self.transitionFunction = transitionFunction
 self.resetter = resetter
 self.timeCounter = timeCounter

def step(self, action):

self.state, reward, done, info = self.transitionFunction.transition(self.state, action)
if self.timeCounter.count():

self.state = self.resetter.resetTimeCounter(self.state, self.timeCounter.startTime)
return self.state, reward, done, info

def reset(self):
 return self.resetter.resetEpisode(self.state)

```
def getCurrentState(self):
    return self.state
```

class ShuttleActionSpace:

```
def __init__(self, system):
    self.system = system
def getActions(self, s):
    if not s.inbound:
        return [-1]
    def isValid(a):
        totalInbound = sum(s.inbound.values())
        return totalInbound <= self.system.capacities[a] - sum(s.stock[a])
        actions = [a for a in self.system.warehouses if isValid(a)]
    if not actions:
        actions = [-2]
    return actions
```


class ShuttleState:

def __init__(self, stock, inbound, info, time):
 self.stock = stock
 self.inbound = inbound
 self.info = info
 self.time = time

def isTerminal(self):
 return False

- f _hash_(self):
 stockString = self.stock.__repr__()
 inboundString = self.inbound.__repr__()
 string = "{} | {}".format(stockString, inboundString)
 return string.__hash__()
- def __eq_(self, other):
 return self.__hash__() == other.__hash__()
- ef __repr__(self):
 return "Stock: {}\nInbound: {}\nTime: {}".format(self.stock, self.inbound, self.time)

RL CHALLENGES IN ACTION

• Huge State Space:

The huge amount of possible states makes the problem extremely complicated

• Local Optima:

If the problem of "Exploration vs. Exploitation" is not solved well, the algorithm tends to stay in a local optimum

• States in general:

A good representation of the problem in the states is essential for the algorithms success. Not having enough information hurts the algorithms knowledge, while having insufficient information increases complexity unnecessary

• Time:

As for all projects, time is one of the most important factors, especially if you want to apply RL

Starting points for the interested scholar

Excellent lecture of David Silver (DeepMind) on the topic

https://www.youtube.com/watch?v=2pWv7GOvuf0&list=P L7-jPKtc4r78-wCZcQn5lqyuWhBZ8fOxT

Library with lots of test problems (e.g. ATARI games)

https://gym.openai.com/

Library with lots of implemented RL algorithms

https://tensorforce.readthedocs.io/en/latest/

CONNECT WITH US @WDL!

David Middelbeck (Head of Product) +49 151 689 698 85 middelbeck@westphalia-datalab.com

Marcus Cramer (Head of Analytics) 49 (0)151 689 698 79 cramer@westphalia-datalab.com ...OR AT:

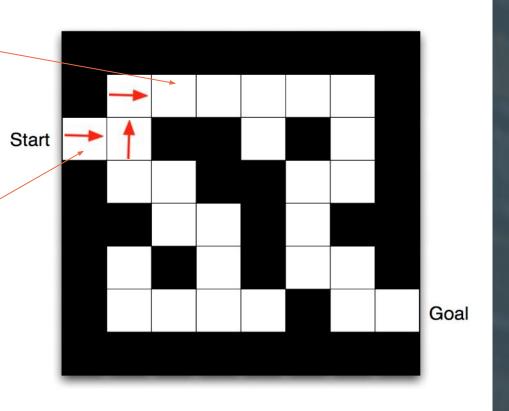
>. TechLabs

• An action is given by a movement in one of the 4 directions

Source: UCL course on RL

 The Agent shall be punished for taking too many steps

Reward per step = -1



THE GRIDWORLD EXAMPLE

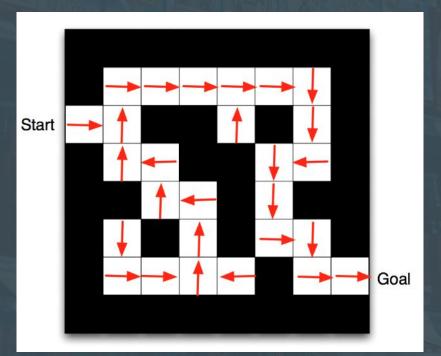
• The state is given by the actual position on

Reach the goal asap

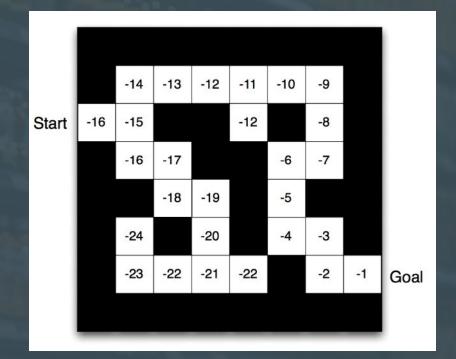
the grid

MAJOR COMPONENTS OF THE AGENT

Policy



Value Function



The optimal policy gives us the best action for each state

Expected reward for each state considering usage of the optimal policy

Source: UCL course on RL