
FULL STACK METRICS:
NATIVE PROMETHEUS SUPPORT ON TRITON

Richard Kiene @shmeeny
Tim Gross @0x74696d

Public Cloud
Triton Elastic Container Service. We run our
customer’s mission critical applications on
container native infrastructure

Private Cloud
Triton Elastic Container Infrastructure is an
on-premise, container run-time environment used
by some of the world’s most recognizable brands

Public Cloud
Triton Elastic Container Service. We run our
customer’s mission critical applications on
container native infrastructure

Private Cloud
Triton Elastic Container Infrastructure is an
on-premise, container run-time environment used
by some of the world’s most recognizable brands

it’s open source!
fork me, pull me: https://github.com/joyent/triton

https://github.com/joyent/triton

https://joyent.com/about/careers

https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers
https://joyent.com/about/careers

“We have built mind-bogglingly
complicated systems that we cannot see,
allowing glaring performance problems
to hide in broad daylight in our systems.”

Bryan Cantrill, Joyent CTO
ACM Queue Vol 4, Issue 1, 2006 Feb 23
http://queue.acm.org/detail.cfm?id=1117401

http://queue.acm.org/detail.cfm?id=1117401

“System performance problems are
typically introduced at the highest layers
of abstraction, but they are often first
encountered and attributed at the lowest
layers of abstraction.”

Bryan Cantrill, Joyent CTO
ACM Queue Vol 4, Issue 1, 2006 Feb 23
http://queue.acm.org/detail.cfm?id=1117401

http://queue.acm.org/detail.cfm?id=1117401

MONITORING IN PRODUCTION
▸ Hardest problems appear in production
▸ Must be able to observe safely in production:
▸ No risk of crashing
▸ Dynamic instrumentation: no performance hit on

observed environment

VALUE OF OBSERVABILITY
▸ Observability is the key to being production-ready
▸ Much of Joyent’s value over our competitors is our

best-in-class observability and debugging tooling

TRITON ARCHITECTURE
▸ Customer applications run as containers
▸ SmartOS or Linux (LX) infrastructure containers, or

Docker application containers, running as Solaris Zones
▸ Proven battle-tested multi-tenant security
▸ Bare-metal performance
▸ Isolation provides observability w/o interference

CLOUD ANALYTICS V1
▸ Historical data is cumbersome to use
▸ API is awkward for high-dimensionality
▸ Want to improve scalability w/ aggregation
▸ Want better availability
▸ No path for end users to application-level metrics

DESIGN CONSTRAINTS
▸ Multi-tenant:
▸ Operators of Triton provide an API for customers (end-

users, developers, etc.) to deploy their containers.
▸ One customer can’t cause brown-outs for other

customers!
▸ Give customers a sane migration path or let them use

their existing monitoring

WHY PULL?
▸ We don’t drop metrics for overloaded target (collection

happens outside the zone)
▸ Can easily throttle customer requests
▸ Pushing to a customer collector that’s down requires

implementing back-off/buffering for every customer in
metrics agent

▸ End-users can have multiple consumers

WHY PROMETHEUS?
▸ Pull not push
▸ Agnostic to storage: end-users can do what they want

with the metrics afterwards (including push them into
their existing metrics solution if they want!)

CONTAINER MONITOR:
ARCHITECTURE

METRIC AGENT
▸ Instance on each physical machine (“compute node”)
▸ Collects metrics from all containers via kstat, zfs list, etc.

Metric

Agent

Triton compute node:
▸ SmartOS
▸ Many customer containers
▸ Metric Agent

SmartOS Container Hypervisor

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Customer
Container

Noun Project icon by Aneeque Ahmed

Metric

Agent

Triton data center:
▸ Many compute nodes
▸ Each has its own Metric Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

METRIC AGENT PROXY
▸ Stateless and horizontally scalable
▸ HA across data center: 1 on head node + min 2 per DC
▸ Routes Prometheus server requests to appropriate

Metric Agent
▸ Responsible for rate-limiting and authentication

DISCOVERY: TRITON CNS
▸ Triton Container Name Service (CNS): automated

container-native DNS service
▸ Containers are automatically assigned A-Records for

instances (and services)
▸ Container Monitor provides CNAME to Metric Agent

Proxy’s IP for each container

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric Agent Proxy:
▸ Prometheus API to each

Metric Agent
Metric

Proxy

METRICS COLLECTION
▸ Customer-owned Prometheus server(s)
▸ Optional customer-owned Metrics Forwarders: forward

metrics to existing monitoring systems

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Proxy

Prometheus Server
▸ Customer-owned
▸ Prometheus API to

Metric Agent Proxy

Prometheus

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Agent

Metric

Proxy

Metrics Forwarder
▸ Customer-owned
▸ Translate from

Prometheus API to
Influx, Graphite, etc.

Metrics

Forwarder

HOW A CONTAINER GETS MONITORED
▸ End-user launches container
▸ VMAPI pushes change feed event to CNS
▸ New CNAME record for each container to Metric Agent

Proxy IP address

HOW A CONTAINER GETS MONITORED, CONT.
▸ Customer's Prometheus server uses Triton discovery

plugin to poll metric agent proxy endpoints for all
containers associated with that account

▸ Metric Agent Proxy forwards requests to appropriate
metric agent

APPLICATION METRICS:
CONTAINERPILOT

AUTOPILOT PATTERN
▸ Design pattern for self-operating and self-managing

applications
▸ Containers adapt to changes in their environment and

coordinate their actions thru globally shared state
▸ Platform agnostic

CONTAINERPILOT
▸ App-centric micro-orchestrator that enables the

Autopilot Pattern
▸ Acts as PID1 in the container and fires user-defined life-

cycle hooks
▸ Telemetry “sensor” hooks feed data to a Prometheus

metrics endpoint

CONTAINERPILOT METRICS ON TRITON
▸ Containers have a CNS name
▸ ContainerPilot exposes Prometheus endpoint
▸ Add discovery catalog (ex. Consul, etcd) to Prometheus

server config

{	
		"consul":	"consul:8500",	
		"preStart":	"/usr/local/bin/reload.sh	preStart",	
		"logging":	{"level":	"DEBUG"},	
		"services":	[
				{	
						"name":	"nginx",	
						"port":	80,	
						"health":	"/usr/bin/curl	--fail	-s	http://localhost/health",	
						"poll":	10,	
						"ttl":	25	
				}	
],	
		"backends":	[
				{	
						"name":	"example",	
						"poll":	7,	
						"onChange":	"/usr/local/bin/reload.sh"	
				}	
],	
	"telemetry":	{	
				"port":	9090,	
				"sensors":	[
						{	
								"name":	"tb_nginx_connections_unhandled_total",	
								"help":	"Number	of	accepted	connnections	that	were	not	handled",	
								"type":	"gauge",	
								"poll":	5,	
								"check":	["/usr/local/bin/sensor.sh",	"unhandled"]	
						},	
						{	
								"name":	"tb_nginx_connections_load",	
								"help":	"Ratio	of	active	connections	(less	waiting)	to	the	maximum	worker	connections",	
								"type":	"gauge",	
								"poll":	5,	
								"check":	["/usr/local/bin/sensor.sh",	"connections_load"]	
						}	
]	
		}	
}	

ContainerPilot
config file

{	
		"consul":	"consul:8500",	
		"preStart":	"/usr/local/bin/reload.sh	preStart",	
		"logging":	{"level":	"DEBUG"},	
		"services":	[
				{	
						"name":	"nginx",	
						"port":	80,	
						"health":	"/usr/bin/curl	--fail	-s	http://localhost/health",	
						"poll":	10,	
						"ttl":	25	
				}	
],	
		"backends":	[
				{	
						"name":	"example",	
						"poll":	7,	
						"onChange":	"/usr/local/bin/reload.sh"	
				}	
],	

ContainerPilot
config file

“telemetry”:	{	
				"port":	9090,	
				"sensors":	[
						{	
								"name":	"tb_nginx_connections_unhandled_total",	
								"help":	"Number	of	accepted	connnections	that	were	not	handled",	

“telemetry”:	{	
				"port":	9090,	
				"sensors":	[
						{	
								"name":	"tb_nginx_connections_unhandled_total",	
								"help":	"Number	of	accepted	connnections	that	were	not	handled",	
								"type":	"gauge",	
								"poll":	5,	
								"check":	["/usr/local/bin/sensor.sh",	"unhandled"]	
						},	
						{	
								"name":	"tb_nginx_connections_load",	
								"help":	"Ratio	of	active	connections	(less	waiting)	to	the	maximum	worker	connections",	
								"type":	"gauge",	
								"poll":	5,	
								"check":	["/usr/local/bin/sensor.sh",	"connections_load"]	
						}	
]	
		}	
}	

ContainerPilot
config file

		"backends":	[
				{	
						"name":	"example",	
						"poll":	7,	
						"onChange":	"/usr/local/bin/reload.sh"	
				}	
],	

DEMO

FULL STACK METRICS:
NATIVE PROMETHEUS SUPPORT ON TRITON

Richard Kiene @shmeeny
Tim Gross @0x74696d

